当然可以,下面是完整代码:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
# Load the data
df = pd.read_csv('fake_or_real_news.csv')
# Create a series to store the labels: y
y = df.label
# Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(df['text'], y, test_size=0.33, random_state=53)
# Initialize a CountVectorizer object: count_vectorizer
count_vectorizer = CountVectorizer(stop_words='english')
# Transform the training data using only the 'text' column values: count_train
count_train = count_vectorizer.fit_transform(X_train)
# Transform the test data using only the 'text' column values: count_test
count_test = count_vectorizer.transform(X_test)
# Initialize a TfidfVectorizer object: tfidf_vectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7)
# Transform the training data: tfidf_train
tfidf_train = tfidf_vectorizer.fit_transform(X_train)
# Transform the test data: tfidf_test
tfidf_test = tfidf_vectorizer.transform(X_test)
# Create the CountVectorizer DataFrame: count_df
count_df = pd.DataFrame(count_train.A, columns=count_vectorizer.get_feature_names())
# Create the TfidfVectorizer DataFrame: tfidf_df
tfidf_df = pd.DataFrame(tfidf_train.A, columns=tfidf_vectorizer.get_feature_names())
# Print the head of count_df
print(count_df.head())
# Print the head of tfidf_df
print(tfidf_df.head())
# Calculate the difference in columns: difference
difference = set(count_df.columns) - set(tfidf_df.columns)
print(difference)
# Check whether the DataFrames are equal
print(count_df.equals(tfidf_df))
```