Lucene 是 Elasticsearch所基于的 Java 库,它引入了按段搜索的概念。
Segment: 也叫段,类似于倒排索引,相当于一个数据集。
Commit point:提交点,记录着所有已知的段。
Lucene index: “a collection of segments plus a commit point”。由一堆 Segment 的集合加上一个提交点组成。
对于一个 Lucene index 的组成,如下图所示。
一个 Elasticsearch Index 由一个或者多个 shard (分片) 组成。
而 Lucene 中的 Lucene index 相当于 ES 的一个 shard。
画图如下:
将文件刷新到磁盘是非常耗费资源的,而且在内存缓冲区和磁盘中间存在一个高速缓存(cache),一旦文件进入到 cache 就可以像磁盘上的 segment 一样被读取了。
画图如下:
数据从 buffer 到 cache 的过程是定期每秒刷新一次。所以新写入的 Document 最慢 1 秒就可以在 cache 中被搜索到。
而 Document 从 buffer 到 cache 的过程叫做 ?refresh 。一般是 1 秒刷新一次,不需要进行额外修改。当然,如果有修改的需要,可以参考文末的相关资料。这也就是为什么说 Elasticsearch 是准实时的。
使文档立即可见:
PUT /test/_doc/1?refresh
{"test": "test"}
// 或者
PUT /test/_doc/2?refresh=true
{"test": "test"}
此处可以联想 Mysql 的 binlog, ES 中也存在一个 translog 用来失败恢复。
flush 操作会分为以下几步执行:
值得注意的是:
手动执行flush:
POST /my-index-000001/_flush
segment 不可改变,所以 docment 并不能从之前的 segment 中移除或更新。
所以每次 commit, 生成 commit point 时,会有一个 .del 文件,里面会列出被删除的 document(逻辑删除)。
而查询时,获取到的结果在返回前会经过 .del 过滤。
更新时,也会标记旧的 docment 被删除,写入到 .del 文件,同时会写入一个新的文件。此时查询会查询到两个版本的数据,但在返回前会被移除掉一个。
每 1s 执行一次 refresh 都会将内存中的数据创建一个 segment。
segment 数目太多会带来较大的麻烦。 每一个 segment 都会消耗文件句柄、内存和cpu运行周期。更重要的是,每个搜索请求都必须轮流检查每个 segment ;所以 segment 越多,搜索也就越慢。
在 ES 后台会有一个线程进行 segment 合并。
物理删除:
在 segment merge 这块,那些被逻辑删除的 document 才会被真正的物理删除。
主要介绍了内部写入和删除的过程,需要了解 refresh、fsync、flush、.del、segment merge 等名词的具体含义。
完整画图如下:
以上就是个人分享的 ES 相关的内容,主要目的是组内技术分享,进行扫盲。不对之处,希望大家留言指正。