以下是使用Python语言编写GPU程序(PyCUDA环境)实现Mandelbrot集的代码:
```python
import pycuda.autoinit
import pycuda.driver as drv
import numpy as np
from pycuda.compiler import SourceModule
# 定义Mandelbrot集计算函数
mandelbrot_kernel = """
__global__ void mandelbrot(float *real, float *imag, int *output, int max_iter) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int idy = blockIdx.y * blockDim.y + threadIdx.y;
const int width = gridDim.x * blockDim.x;
const int height = gridDim.y * blockDim.y;
const int index = idy * width + idx;
float c_real = real[idx];
float c_imag = imag[idy];
float z_real = 0.0f;
float z_imag = 0.0f;
int iter = 0;
while (z_real * z_real + z_imag * z_imag < 4.0f && iter < max_iter) {
float temp_real = z_real * z_real - z_imag * z_imag + c_real;
float temp_imag = 2.0f * z_real * z_imag + c_imag;
z_real = temp_real;
z_imag = temp_imag;
iter++;
}
output[index] = iter;
}
"""
# 设置参数
width, height = 512, 512
max_iter = 200
block_size = (16, 16)
grid_size = (int(np.ceil(width / block_size[0])), int(np.ceil(height / block_size[1])))
# 创建输入数据
real = np.linspace(-2, 1, width).astype(np.float32)
imag = np.linspace(-1, 1, height).astype(np.float32)
# 创建输出数据
output = np.zeros((height, width), dtype=np.int32)
# 编译CUDA代码
mod = SourceModule(mandelbrot_kernel)
# 获取函数句柄
mandelbrot_func = mod.get_function("mandelbrot")
# 将数据传输到GPU
real_gpu = drv.mem_alloc(real.nbytes)
imag_gpu = drv.mem_alloc(imag.nbytes)
output_gpu = drv.mem_alloc(output