当然可以,以下是一个简单的离散制造行业产品物料需求智能预测的Python代码示例:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 读取数据集
data = pd.read_csv('manufacturing_data.csv')
# 数据预处理
data['date'] = pd.to_datetime(data['date'])
data['year'] = data['date'].dt.year
data['month'] = data['date'].dt.month
data['day'] = data['date'].dt.day
data.drop(['date'], axis=1, inplace=True)
# 划分训练集和测试集
X = data.drop(['demand'], axis=1)
y = data['demand']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测结果
y_pred = model.predict(X_test)
# 模型评估
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print("RMSE:", rmse)
```
请注意,这只是一个简单的示例,实际上,离散制造行业产品物料需求智能预测需要更复杂的算法和数据处理技术。