def LSTNet(trainX1,trainX2,trainY,config):
input1 = Input(shape=(trainX1.shape[1], trainX1.shape[2]))
conv1 = Conv1D(filters=48, kernel_size=6, strides=1, activation='relu') # for input1
# It's a probelm that I can't find any way to use the same Conv1D layer to train the two inputs,
conv2 = Conv1D(filters=48, kernel_size=6 , strides=1, activation='relu') # for input2
conv2.set_weights(conv1.get_weights()) # at least use same weight
conv1out = conv1(input1)
bigru1out = Bidirectional(CuDNNGRU(64, return_sequences=True))(conv1out)
attn1 = MultiHeadAttention(num_heads=4)(bigru1out)
attn1 = Dropout(config.dropout)(attn1)
input2 = Input(shape=(trainX2.shape[1], trainX2.shape[2]))
conv2out = conv2(input2)
bigru2out = Bidirectional(CuDNNGRU(64, return_sequences=True))(conv2out)
attn2 = MultiHeadAttention(num_heads=4)(bigru2out)
attn2 = Dropout(config.dropout)(attn2)
bigru_out = concatenate([attn1, attn2])
output = Dense(trainY.shape[1])(bigru_out)
#highway 使用Dense模拟AR自回归过程,为预测添加线性成份,同时使输出可以响应输入的尺度变化。
highway_window = config.highway_window
#截取近3个窗口的时间维 保留了所有的输入维度
z = Lambda(lambda k: k[:, -highway_window:, :])(input1)
z = Lambda(lambda k: K.permute_dimensions(k, (0, 2, 1)))(z)
z = Lambda(lambda k: K.reshape(k, (-1, highway_window*trainX1.shape[2])))(z)
z = Dense(trainY.shape[1])(z)
output = add([output,z])
output = Activation('sigmoid')(output)