当然可以,以下是将GRU替换为BiGRU,并在其后添加多头注意力机制的代码示例:
```python
from keras.layers import Input, Conv1D, Bidirectional, CuDNNGRU, Dropout, concatenate, Dense, Lambda, Activation, add
from keras.models import Model
import keras.backend as K
def LSTNet(trainX1, trainX2, trainY, config):
input1 = Input(shape=(trainX1.shape[1], trainX1.shape[2]))
conv1 = Conv1D(filters=48, kernel_size=6, strides=1, activation='relu') # for input1
# It's a probelm that I can't find any way to use the same Conv1D layer to train the two inputs,
conv2 = Conv1D(filters=48, kernel_size=6 , strides=1, activation='relu') # for input2
conv2.set_weights(conv1.get_weights()) # at least use same weight
conv1out = conv1(input1)
gru1out = Bidirectional(CuDNNGRU(64, return_sequences=True))(conv1out)
gru1out = Dropout(config.dropout)(gru1out)
# Multi-Head Attention layer
num_heads = config.num_heads
attention = Lambda(lambda x: K.permute_dimensions(x, (0, 2, 1)))(gru1out)
attention = Dense(gru1out.shape[-1])(attention)
attention = Lambda(lambda x: K.permute_dimensions(x, (0, 2, 1)))(attention)
attention = Lambda(lambda x: K.reshape(x, (-1, gru1out.shape[1], num_heads, gru1out.shape[-1]//num_heads)))(attention)
attention = Lambda(lambda x: K.permute_dimensions(x, (0, 2, 1, 3)))(attention)
attention = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[3, 2]))([attention, attention])
attention = Lambda(lambda x: K.softmax(x))(attention)
attention = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[3, 2]))([attention, attention])
attention = Lambda(lambda x