首先,我们将等式3(a^2 + b^2 + c^2) = (a + b + c)^2展开:
3a^2 + 3b^2 + 3c^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc
化简得:
2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0
再整理得:
a^2 - 2ab + b^2 + a^2 - 2ac + c^2 + b^2 - 2bc + c^2 = 0
即:
(a - b)^2 + (a - c)^2 + (b - c)^2 = 0
由平方和的非负性可知,上式左边三项均为非负数,当且仅当它们都为零时取到最小值0。因此,
a - b = 0,a - c = 0,b - c = 0
解得:
a = b = c
综上所述,当3(a^2 + b^2 + c^2) = (a + b + c)^2时,有a = b = c。