以下是转换后的R语言代码:
```R
library(caret)
library(mlr)
# 定义目标函数
fun_ <- function(x) {
# 将0/1向量转化为bool类型的特征索引
features <- cols[x == 1]
# 提取特征子集
X <- train_1[, features]
# 使用特征子集进行交叉验证并计算F1分数
task <- makeClassifTask(data = X, target = "target")
lrn <- makeLearner("classif.xgboost", predict.type = "prob")
resampling <- makeResampleDesc("CV", iters = 5, stratify = TRUE)
measure <- mlr::fmeasure
cv <- resample(learner = lrn, task = task, resampling = resampling, measures = measure)
val <- mean(cv$measures[[1]])
return(val)
}
# 定义遗传算法特征选择函数
GV_col <- function(func, len_, num_, it_num = 50, jiaopei = 0.8, bianyi = 0.2) {
# 初始化种群
pop <- matrix(sample(0:1, num_ * len_, replace = TRUE), nrow = num_)
best_f <- 0
list_best_f <- c()
for (i in 1:it_num) {
scores <- apply(pop, 1, func)
best_fit_ <- max(scores)
if (best_fit_ > best_f) {
best_f <- best_fit_
best_p <- pop[which.max(scores), ]
}
list_best_f <- c(list_best_f, best_f)
fitness <- scores - min(scores) + 0.01
idx <- sample(num_, num_, replace = TRUE, prob = fitness / sum(fitness))
pop <- pop[idx, ]
new_pop <- matrix(0, nrow = num_, ncol = len_)
for (j in 1:num_) {
father <- pop[j, ]
child <- father
if (runif(1) < jiaopei) {
mother_id <- sample(num_, 1)
low_point <- sample(len