```python
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv("./data/Wuhan-2019-nCoV.csv")
# 获取国家某时间点的疫情病例累计信息
def getDataByCountry(name,date):
tem = df.loc[(df['date']==date)&(df['country']==name) & (df['province']!=df['province'])]
if tem.empty:
return None
return tem.iloc[0]
# 获取省级区域某时间点的疫情病例累计信息
def getDataByProvince(name,date):
return df.loc[(df['date']==date)&(df['province']==name) & (df['city']!=df['city'])].iloc[0]
# 获取城市某时间点的疫情病例累计信息
def getDataByCity(name,date):
return df.loc[(df['date']==date)&(df['city']==name)].iloc[0]
# 定义区域范围
HuBeiCitys = [
"武汉市","黄石市","十堰市","宜昌市","襄阳市","鄂州市","荆门市",
"孝感市","荆州市","黄冈市","咸宁市","随州市","恩施土家族苗族自治州",
"仙桃市","潜江市","天门市",
]
# 定义时间范围,以一天作为步长,统计新增确诊病例数
HuBeiDates = [
'2020-01-31'
]
for i in range(29):
HuBeiDates.append("2020-02-{:02d}".format(i+1))
# 构建不同城市在时间范围内的累计确诊病例数的列表
HuBeiStore = {}
for city in HuBeiCitys:
HuBeiStore[city] = [getDataByCity(city,HuBeiDates[i])['confirmed'] for i