以下是针对上面提出的问题进行修正后的代码:
```
from keras.layers import Input, Conv1D, CuDNNGRU, MultiHeadAttention, LayerNormalization, concatenate, Dense, Lambda, add, Activation
from keras.models import Model
import keras.backend as K
def LSTNet(trainX1,trainX2,trainY,config):
input1 = Input(shape=(trainX1.shape[1], trainX1.shape[2]))
conv1 = Conv1D(filters=48, kernel_size=6, strides=1, activation='relu') # for input1
conv2 = Conv1D(filters=48, kernel_size=6 , strides=1, activation='relu') # for input2
conv2.set_weights(conv1.get_weights()) # set the same weights for conv2
conv1out = conv1(input1)
gru1out = CuDNNGRU(64)(conv1out)
attention1_output = MultiHeadAttention(num_heads=8, key_dim=64)(gru1out, gru1out)
attention1_output = LayerNormalization()(attention1_output + gru1out)
input2 = Input(shape=(trainX2.shape[1], trainX2.shape[2]))
conv2out = conv2(input2)
gru2out = CuDNNGRU(64)(conv2out)
attention2_output = MultiHeadAttention(num_heads=8, key_dim=64)(gru2out, gru2out)
attention2_output = LayerNormalization()(attention2_output + gru2out)
attn_out = concatenate([attention1_output,attention2_output], axis=-1) # specify the concatenation axis
output = Dense(trainY.shape[1])(attn_out)
#highway
highway_window = config.highway_window
z = Lambda(lambda k: k[:, -highway_window:, :])(input1)
z = Lambda(lambda k: K.permute_dimensions(k, (0, 2, 1)))(z)
z = Lambda(lambda k: K.reshape(k, (-1, highway_window*trainX1.shape[2])))(z)
z = Dense(trainY.shape[1])(z)
output = add([output,z])
output = Activation('tanh')(