假设射线的起点为P0(x0, y0, z0),方向向量为V(a, b, c),平面的方程为z = k,其中k为平面的高度。则射线与平面的交点可以通过以下公式计算:
t = (k - z0) / c
x = x0 + t * a
y = y0 + t * b
z = k
下面是一个示例代码,用于实现射线与平行于Z轴的平面的交点:
```c++
#include
#include
using namespace cv;
bool intersectRayPlane(const Point3d& rayPt, const Point3d& rayDir, double planeHeight, Point3d& intersection)
{
if (rayDir.z == 0) {
return false; // 射线与平面平行
}
double t = (planeHeight - rayPt.z) / rayDir.z;
if (t < 0) {
return false; // 射线与平面相交但不在正方向上
}
intersection.x = rayPt.x + t * rayDir.x;
intersection.y = rayPt.y + t * rayDir.y;
intersection.z = planeHeight;
return true;
}
int main()
{
Point3d rayPt(1, 2, 3);
Point3d rayDir(0.5, 0.5, 1);
double planeHeight = 0;
Point3d intersection;
if (intersectRayPlane(rayPt, rayDir, planeHeight, intersection)) {
std::cout << "Intersection: (" << intersection.x << ", " << intersection.y << ", " << intersection.z << ")" << std::endl;
}
else {
std::cout << "No intersection" << std::endl;
}
return 0;
}
```
在这个示例中,我们定义了一个intersectRayPlane函数,用于计算射线与平面的交点。如果射线与平面平行,则返回false;如果射线与平面相交但不在正方向上,则返回false;否则,返回true,并将交点